Example: input: A = [[1, 2], [3, 4]], T = [[2, 0], [0, 2]], S = [[1, 1], [0, 1]] output: [[0.5,1.5],[1.5,3.5]] reasoning: The matrices T and S are used to transform matrix A by computing $T^{-1}AS$.
1. Check if \(T\) and \(S\) are invertible by ensuring their determinants are non-zero; else return -1.
2. Compute the inverses of \(T\) and \(S\), denoted as \(T^{-1}\) and \(S^{-1}\).
3. Perform the matrix multiplication to obtain the transformed matrix:
\[ A' = T^{-1}AS \]• \(\det(T) = 4 \neq 0 \)
• \(\det(S) = 1 \neq 0 \)
Compute the inverses: \[ T^{-1} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \] Then, perform the transformation: \[ A' = T^{-1}AS = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.5 & 1.5 \\ 1.5 & 3.5 \end{pmatrix} \]import numpy as np def transform_matrix(A: list[list[int|float]], T: list[list[int|float]], S: list[list[int|float]]) -> list[list[int|float]]: # Convert to numpy arrays for easier manipulation A = np.array(A, dtype=float) T = np.array(T, dtype=float) S = np.array(S, dtype=float) # Check if the matrices T and S are invertible if np.linalg.det(T) == 0 or np.linalg.det(S) == 0: # raise ValueError("The matrices T and/or S are not invertible.") return -1 # Compute the inverse of T T_inv = np.linalg.inv(T) # Perform the matrix transformation; use @ for better readability transformed_matrix = np.round(T_inv @ A @ S, 3) return transformed_matrix.tolist()
There’s no video solution available yet 😔, but you can be the first to submit one at: GitHub link.